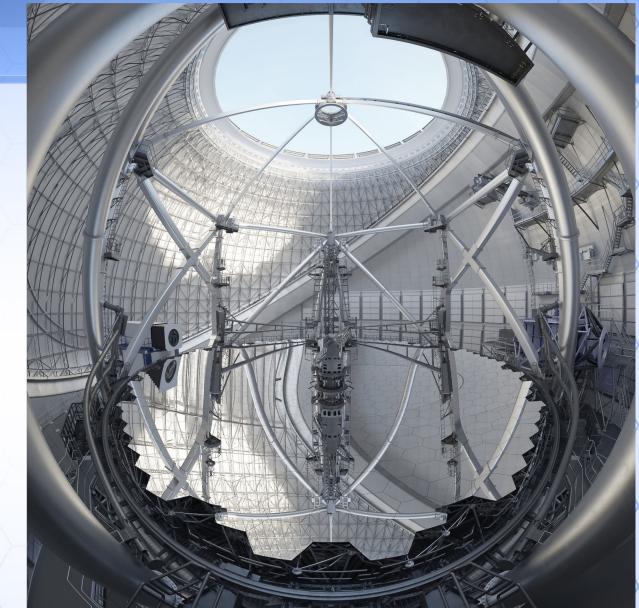


TMT Science Instruments: First-Light and Beyond

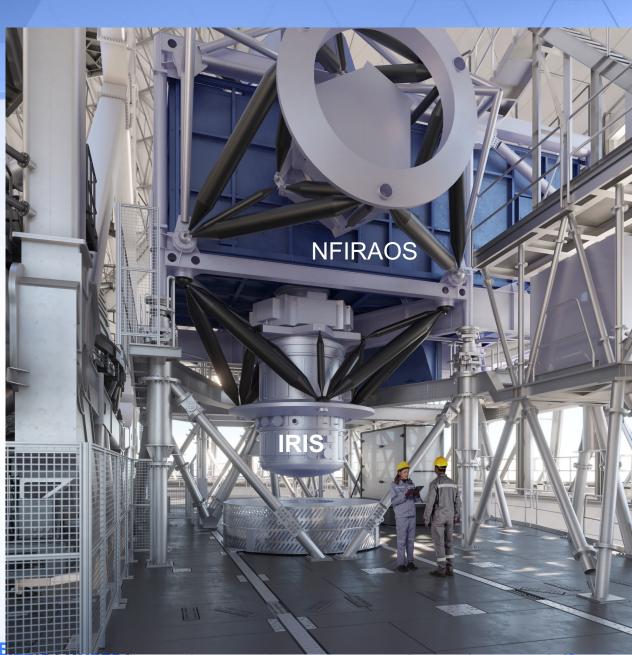
Dave Andersen Science Instruments Group Lead

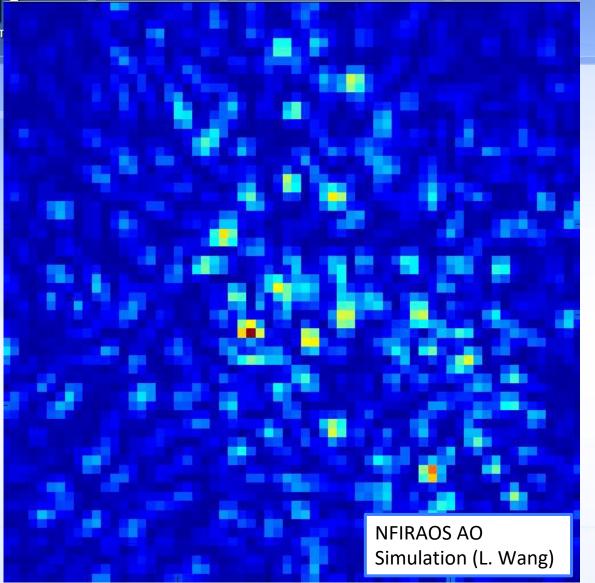
April 25 and April 27

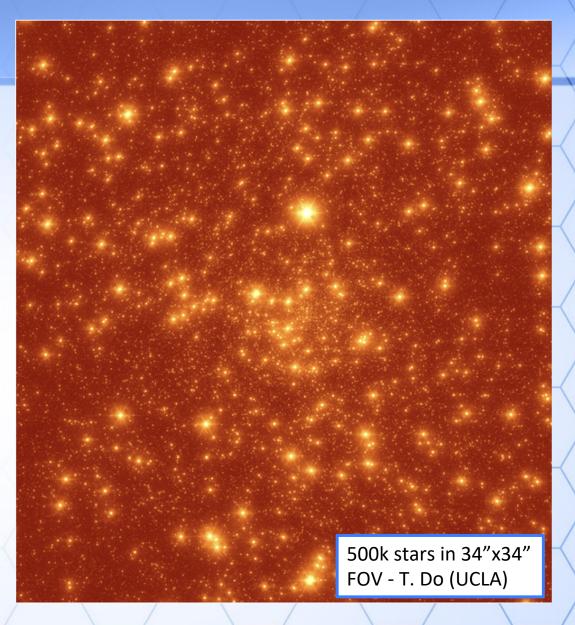

Information Restricted Per Cover Page

TMT.INS.PRE.23.011.REL01

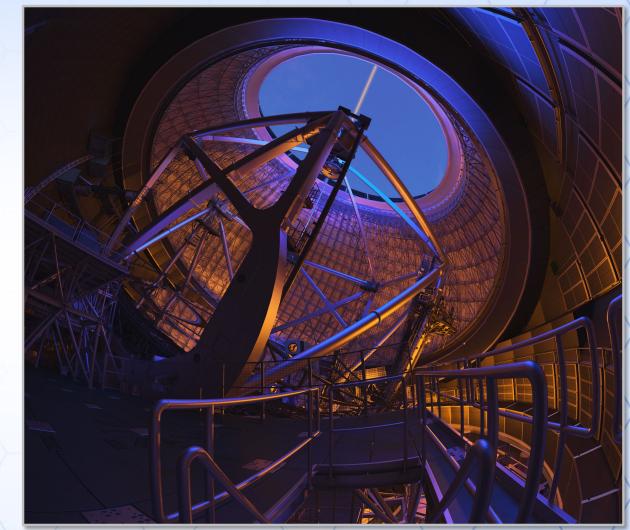
TMT at a "Sweet Spot"


- Provides a dramatic increase in science performance compared to today's 8-10m telescope in terms of angular resolution ~ D⁻¹ and sensitivity ~ D² (for AO, point source sensitivity scales as ~ D⁴)
- While maintaining cost and technical challenges at reasonable levels
 - Simple RC optical design
 - Steerable M3
 - Instruments all on gravity-invariant Nasmyth platforms




TMT Adaptive Optics

- TMT designed with Adaptive Optics (AO) in mind
 - Minimize vibration and uncorrectable errors
- AO Facilities
 - NFIRAOS Multi-Conjugate Adaptive Optics (MCAO) system – Completed Final Design Review
 - Laser Guide Star Facility Preliminary Design Review in less than 6 months
 - AO Software Real Time Controller in production


Information Restricted Per Cover Page

TMT.INS.PRE.23.011.REL01/

TMT Adaptive Optics Capabilities

- Uniform, high Strehl ratio (50% in H-band) performance over 30" field of view
- Designed to produce high sky coverage (>50% sky coverage near the North Galactic Pole)
- Enables high precision astrometry (<50 µas RMS)

TMT First Light Instruments

IRIS - InfraRed Imaging Spectrograph

- Near Infrared Imager and Integral Field Spectrograph
- Fed by MCAO system NFIRAOS
- PI: Larkin (UCLA) PS: Wright (UCSD)
 - Team: UCLA, UCSD, CIT, NRC HAA, NAOJ, TIO
 - Final Design Phase

WFOS - Wide-Field Optical Spectrograph

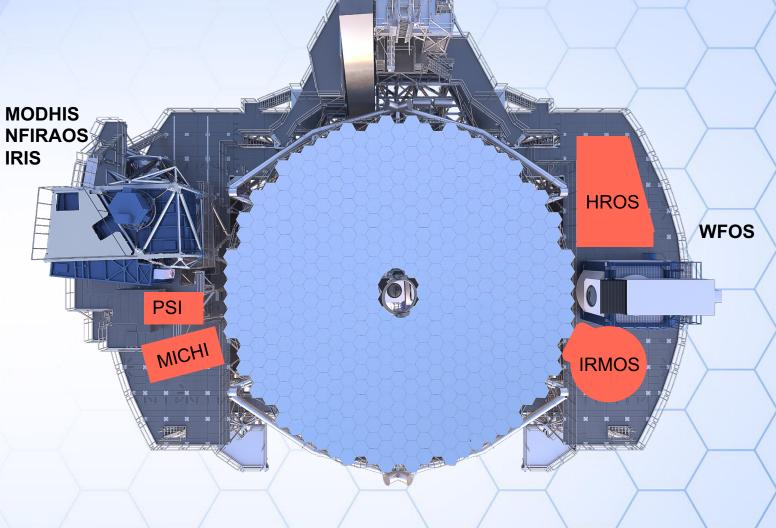
- Optical Multi-Object Spectrograph with Imaging Capability
- PI: Steidel (CIT) PS: Peng (NOIRLab)
 - Team: CIT, ITCC, NAOJ, TIO
 - Preliminary Design Phase
- MODHIS Multi-Objective Diffraction-limited High-resolution Infrared Spectrograph
 - Near Infrared High Spectral Resolution Precision Radial Velocity Spectrograph
 - Fed by MCAO system NFIRAOS
 - PI: Mawet (CIT) co-PI: Fitzgerald (UCLA) PS: Konopacky (UCSD)
 - Team: UCLA, UCSD, CIT, TIO
 - Conceptual Design Phase

Information Restricted Per Cover Page

TMT.INS.PRE.23.011.REL01

A STATISTICS AND AND A STATISTICS

WFOS


IRIS

MODHIS

TMT Instrument Layout

- Large Nasmyth Platforms will support all first decade instruments
- Flexible space will allow TMT instrumentation to grow and evolve over observatory lifetime

Instrument and

NFIRAOS/Narrow Field Infrared Adaptive Optics

Description

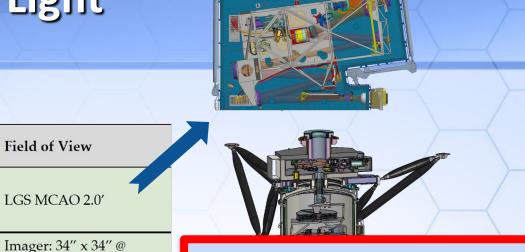
System

λ Range

0.8 - 2.4

(µm)

Instruments at First Light


Modes

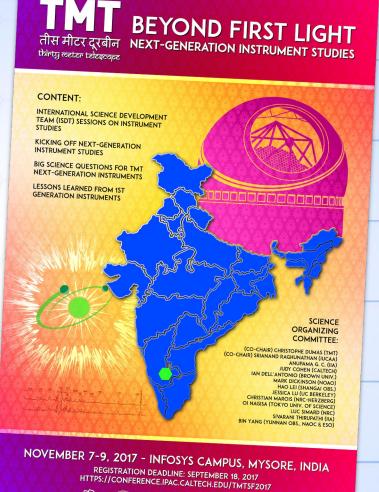
NGSAO,

LGS MCAO, SL Enhanced

Spectral Resolution

N/A

- op
- ру

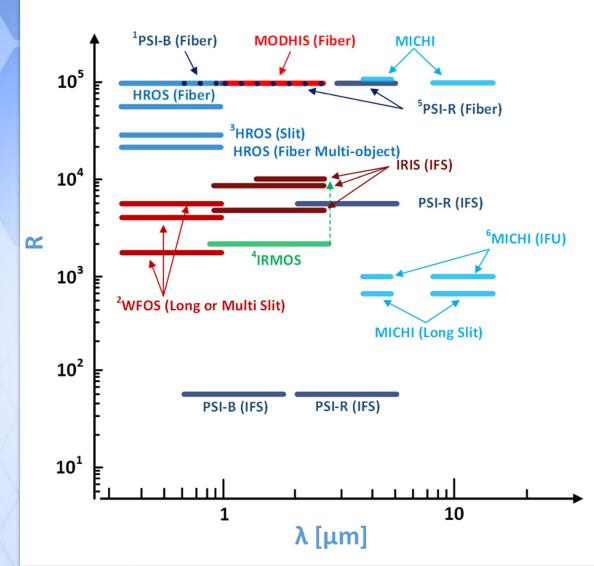

IRIS /Diffraction-Limited NIR Imager and IFS	0.84 – 2.4	Z, Y, J, H, K, bandpass filters and multiple narrower band filters. 4,000 and 8,000 (some modes to 10,000)	NGSAO, LGS MCAO SL Enhanced	Imager: 34" x 34" @ 0.004"/pix IFU with two slicing techniques Lenslet: 0.512" x 0.512" @ 0.004"/spaxel Slicer: 2.25" x 4.4" @ 0.050"/spaxel	First light instruments match to priorities in Astro2020: - Adaptive Optics - Multi-Object Spectroscopy
WFOS /Wide Field Optical Spectrometer	0.31 – 1.0	1,500 and 3,500 using 0.75" slits. Goal of 5,000 currently achieved and higher R available with narrower slits.	Seeing-limited GLAO	25 (8.3 x 3)-arcmin ² 500" total slit length (up to 60 targets with 8" slits) Imaging: full field @ 0.05"/pixel	- High-Resolution Spectroscop
MODHIS /Multi- Objective Diffraction- Limited High-Resolution Infrared Spectrograph	0.95 – 2.4	> 100,000 with 30 cm/s (goal 10 cm/s) Doppler velocity precision	NGSAO, LGS MCAO	4" diameter field of regard with positionable diffraction limited fibe bundle (target, sky, speckle, spare, calibration). 6"x6" imaging guider.	Optical bench Bipod Assembly Internal pylon NFIPACS focal plane (below plate)

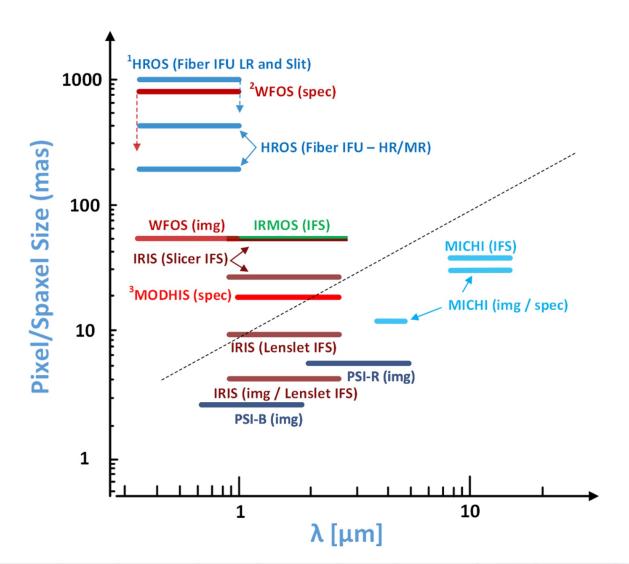
8

Instrumental Capabilities: Beyond First Light ...

Instrument and Description	λ Range (µm)	Spectral Resolution	Modes	Field of View
GLAO/Ground Layer Adaptive Optics (feeds WFOS and HROS)	0.31 – 1.0	N/A	GLAO	Large enough to cover WFOS
MIRAO/Mid-Infrared Adaptive Optics (feeds MICHI)	4.5 - 28	N/A	LGS MIRAO, high contrast	>10" (1' goal)
PSI PFI/Planet Formation Instrument	0.6 – 5.3	(fiber fed) High resolution R > 100K (IFS) Medium resolution R > 5,000 (IFS) Low resolution R > 50	ExAO	2–5.3 μm only: 1.2" x1.2" (low resolution) 0.15" x 0.15" (medium resolution)
MICHI MIRES/ Mid-Infrared Echelle Spectrometer	3.4 - 13.8	Imager < 100, IFS 600–1,000, Spectrometer 120,000	MIRAO	Imager: 28.1" x 28.1" @ 11 mas/pix N band IFU: 0.175" x 0.07" (35 mas/spaxel)
HROS /High-Resolution Optical Spectrograph	0.31 – 1	Single Object: 100,000 & 50,000 (fibers) 40,000 & 20,000 (slits) Multi-Object: 25,000	Seeing-limited GLAO	> 10" in diameter (single object mode) 10'–20' diameter (multi- object mode)
IRMOS/IR Multi-Object Spectrograph	0.8 – 2.5	2,000 - 10,000	ΜΟΑΟ	> ten 3" IFUs deployable within a 5' diameter field

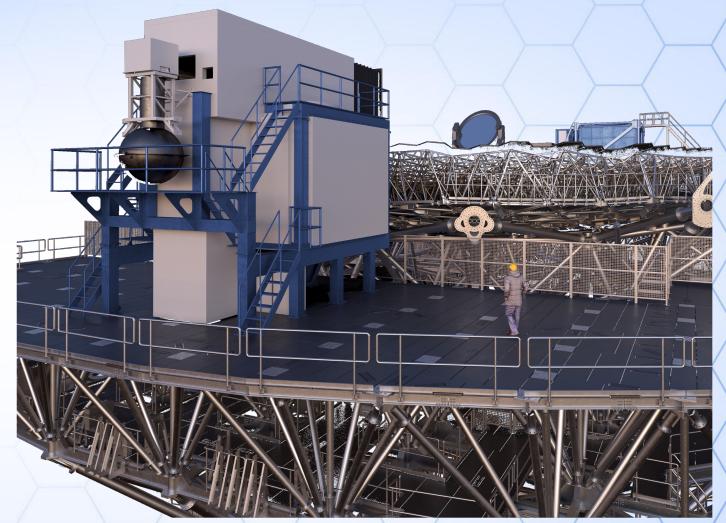
TMT 🖗 🕸 Aries 🦉


Information Restricted Per Cover Page


TMT.INS.PRE.23.011.REL01

(TRAP)

Discovery Space: First-light & First-Decade Instruments



Want to learn more or get involved?

- TMT's web page (tmt.org) has up-to-date information on all the first light instruments and AO systems
- Contact me: dandersen@tmt.org
- Contact Warren Skidmore: was@tmt.org
- Reach out to any of the Principal Investigators or Project Scientists

TMT.INS.PRE.23.011.REL01

Acknowledgments

The TMT Project gratefully acknowledges the support of the TMT collaborating institutions. They are the California Institute of Technology, the University of California, the National Astronomical Observatory of Japan, the National Astronomical Observatories of China and their consortium partners, the Department of Science and Technology of India and their supported institutes, and the National Research Council of Canada. This work was supported as well by the Gordon and Betty Moore Foundation, the Canada Foundation for Innovation, the Ontario Ministry of Research and Innovation, the Natural Sciences and Engineering Research Council of Canada, the British Columbia Knowledge Development Fund, the Association of Canadian Universities for Research in Astronomy (ACURA), the Association of Universities for Research in Astronomy (AURA), the U.S. National Science Foundation, the National Institutes of Natural Sciences of Japan, and the Department of Atomic Energy of India.